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Motived by the work of Li and Meneveau �Phys. Rev. Lett. 95, 164502 �2005��, we propose and solve a
model for the Lagrangian evolution of both longitudinal and transverse velocity and temperature increments for
Boussinesq convection. From this model, the short-time evolution of an initially imposed Gaussian joint
probability density function �PDF� of both velocity and temperature increments is computed analytically and
the trend to non-Gaussian statistics shown in a quantitative way. Predictions for moments of the joint PDF are
obtained and their behavior analyzed with respect to known experimental and numerical results. The obtained
results do not depend on the model free parameters, a fact in favor of their robustness.
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Non-Gaussian fluctuations are ubiquitous features in tur-
bulence, ranging from astrophysical plasma turbulence �1� to
the �apparently� simpler world of passive scalar turbulence
�2�. The key observation is that the probability density func-
tions of spatial velocity increments across small distances
shows considerably longer tails than the ones of a Gaussian
distribution. This phenomenon is directly related to the inter-
mittency and anomalous scaling of equal-time structure func-
tions �3�.

A fully consistent theoretical description of the mecha-
nisms at the origin of intermittency has been provided in the
last decade for passive scalar advection �see �4� for a review�
by self-similar Gaussian white-in-time velocity fields �5�.
The same theory does not apply to the case of general ad-
vection. Nevertheless, strong numerical evidence �6� sup-
ports the idea that the same mechanism at the origin of in-
termittency also operates in the latter case. A fundamental
link between geometry and intermittency arises from �6�
which has also been detected in Navier-Stokes turbulence
�7�.

Although intermittency usually emerges in systems dis-
playing cascadelike mechanisms for the energy transfer, a
simple Lagrangian model that does not invoke energy cas-
cade and nevertheless shows anomalous corrections to the
dimensional predictions of Kolmogorov type has recently
been presented by Chevillard and Meneveau in Ref. �8�. In
this model, intermittency corrections to the dimensional pre-
dictions are induced by the mechanisms at the origin of non-
Gaussian statistics identified by Li and Meneveau �9,10� for
a simpler Lagrangian model. The latter model was derived
from the Navier-Stokes equations coupled to the passive sca-
lar equation and consists of a nonlinear dynamical system for
the Lagrangian evolution of increments both of the passive
scalar and of the longitudinal and transverse velocity. The
integration of the model equations allowed the authors to
numerically reconstruct the time evolution of an initially im-
posed joint probability density function �PDF� for velocity
and scalar increments and to capture the basic mechanisms at
the origin of non-Gaussian statistics.

In this Rapid Communication we show that Li and Men-
eveau’s idea can be fruitfully carried over to quantitatively
describe and predict known features of turbulent convection,
including the lack of Gaussianity for the statistics of velocity

and temperature increments. The obtained model equations
can be solved analytically and the expression for the time-
dependent joint PDFs of both velocity and temperature in-
crements at short time extracted. The regime analyzed by Li
and Meneveau is obtained in our model as a particular case.
Moreover, the fully analytical formulation allows us to iden-
tify an inconsistency in the models �9,10�; we propose and
apply a strategy to overcome it.

The starting point of our analysis is the three-dimensional
incompressible Boussinesq convection problem ruled by the
coupled equations

�tui + u · �ui = −
1

�
�ip + �1 − ��T − T0��gi + ��2ui,

�tT + u · �T = ��2T ,

where T is the temperature field �with T0 a reference value�,
g=−gẑ is the gravitational acceleration, � is the thermal ex-
pansion coefficient, and � and � are the molecular diffusivity
and viscosity, respectively.

Our aim here is to find equations for the velocity and
temperature increments between points separated by a dis-
tance, say l. When the scale l belongs to the interval of scales
where both velocity and temperature are smooth, the incre-
ments of the latter two fields over the distance l are deter-
mined by knowledge of velocity and temperature gradients
via a simple Taylor expansion. A natural way to define a
scale l at which dynamical fields are smooth is to act with a
filter on the governing equations. In doing so, taking the
gradient of the resulting equations for the filtered fields ū and

T̄, it is not difficult to obtain �see �11,12� for the particular

case without buoyancy� the following equations for Āij

��iūj and B̄i��iT̄:

Ā
˙

ij = − ĀikĀkj + �gB̄i� jd +
D

d
�ij + Hij �1a�

B̄
˙

i = − ĀijB̄j + Ki. �1b�

The time derivatives here are Lagrangian derivatives
�i.e., the rate of change along the local smoothed field�,
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D� ĀijĀji−�gB̄d, Hij �−��ij
2 p̄− �1/d��ij�

2p̄�− ��ik
2 � jk

u

− �1/d��ij�lk
2 �lk

u �+��2Āij, Ki�−�ij
2 � j

T+��2B̄i, �ij
u and �i

T being
the usual subgrid scale stresses for velocity and temperature,
respectively, and d is the space dimension �from now on d
=2,3�.

Let us now consider velocity and temperature differences
over a distance r close to l. From the smoothness of the two
fields we have

�ūi�r,t� � ūi�x + r� − ūi�x� � Ājirj , �2a�

�T̄�r,t� � T̄�x + r� − T̄�x� � B̄iri. �2b�

Under the assumption of homogeneous turbulent fluctua-

tions, Āij and B̄i do not depend on the position x and, more-

over, ��ūi�r , t��= ��T̄�r , t��=0, where the angular brackets
denote space or time averages. Expressions for the transverse
and longitudinal velocity increments and temperature differ-
ences over the fixed distance l immediately follow from �2�
and the smoothness of the velocity field:

�u = lĀijr̂ir̂ j , �3a�

�v = l	PijĀkjr̂k	 = lĀijr̂iê j , �3b�

�T = lB̄ir̂i. �3c�

Here r̂ and ê are the unit vectors in the directions of the
longitudinal and the transverse velocity components and Pij
��ij − r̂ir̂ j is the usual transverse projector.

In order to obtain equations for �u, �v, � �i.e., the angle
between ê and êc, the unit vector orthogonal to r̂ and lying
on the same plane of ẑ�, �T, and 	 �i.e., the angle between r̂
and ẑ�, the first step is to take the material derivatives of �3�.

An explicit dependence on Ā
˙

ij, B̄
˙

i, and ṙk emerges as a con-
sequence of time derivatives. The latter quantities can imme-
diately be obtained exploiting Eqs. �1� and recalling that we

are dealing with a smooth flow on l, for which ṙi= Ājirj. The
resulting equations in d dimensions �here d=2,3� read

�̇u =
1

l

2 − d

d
�u2 +

1

l
�v2 + �g�T cos 	 + lHrr� , �4a�

�̇v = −
2

l
�u�v + �g�T sin 	 cos � + lHre, �4b�

�̇ =
1

l
�v

sin �

tan 	
− �g

�T

�v
sin 	 sin � + l

Hrn

�v
, �4c�

�Ṫ = −
1

l
�u�T + lKr, �4d�

	̇ = −
1

l
�v cos � , �4e�

where the subscripts r, e, and n label the projections onto the
three unit vectors of the rotating orthonormal basis, r̂, ê, and

n̂= r̂
 ê, respectively �e.g., Hre=Hijr̂iêj�. In Eq. �4a� the im-
position of the divergenceless condition for the velocity field
�13� allows one to extract from D the term 2�u2 / l2. In plain
words, D=2�u2 / l2+D�, D� being not closed with respect to
the Lagrangian variables of system �4�. The function Hrr�
=Hrr+D� /d thus appears in �4a�. The two-dimensional case
d=2 corresponds to ��0 with Hrn�0, which identically
satisfies Eq. �4c�.

Notice that, when �T is a passive scalar and �u is a white-
in-time random process, neglecting Kr, a non-Gaussian sta-
tistics for �T is expected by virtue of the arc sine law �14�:
keeping the same sign for the whole walk and equipartition
of the time between positive and negative values are indeed
the most and the least probable events, respectively.

Coming back to the system �4�, the functions Hrr� �t�,
Hre�t�, Hrn�t�, and Kr�t� are unknown and give rise to the
usual closure problem typical of nonlinear systems. In Ref.
�10� the closure problem has been tackled by assuming Hrr�
=Hre=Hrn=Kr=0. We will see later that such an assumption
actually turns out to be incompatible with homogeneity. To
overcome the problem, we take a different point of view with
respect to Refs. �9,10� by making explicit the time depen-
dency of Hrr� �t�, Hre�t�, Hrn�t�, and Kr�t�. In view of the fact
that we will focus our attention on the short-time evolution
of the system �4� we can perform a Taylor expansion for the
four above unknown functions up to O�t4� in the present
study:

Hrr� �t� = 

i=0

3

Hrr�
�i�ti + O�t4� , �5a�

Hre�t� = 

i=0

3

Hre
�i�ti + O�t4� , �5b�

Hrn�t� = 

i=0

3

Hrn
�i�ti + O�t4� , �5c�

Kr�t� = 

i=0

3

Kr
�i�ti + O�t4� , �5d�

with coefficients Hrr
��i�, Hre

�i�, Hrn
�i�, and Kr

�i� to be determined.
As we will see, eight of 16 of these coefficients remain free,
the others being fixed by the imposition of ��u�= ��T�=0 at
the O�t4�.

Unlike what happens in the homogeneous and isotropic
limit of purely hydrodynamic turbulence of Refs. �9,10�, here
the angular dependences must explicitly be taken into ac-
count as a consequence of the intimate anisotropy of our
system. By its very definition, the model system �4� is justi-
fied only for short-time evolutions. It is thus meaningful to
solve it for short times by means of low-order Taylor expan-
sions. Here we consider the solution up to order t4. The latter
will be enough to draw our main conclusions. The resulting
expressions for �u�t�, �v�t�, ��t�, �T�t�, and 	�t� correct up
to O�t4� turn out to be quite long and not particularly infor-
mative. For this reason they will not be reported here.
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Once we have extracted the initial conditions as a func-
tion of the solutions at time t, we can easily determine
the time evolution of an initially imposed joint PDF and,
consequently, of any its moment averages being on the
evolved joint PDF. To be more specific, let
P0�P��u0 ,�v0 ,�0 ,�T0 ,	0 ;0� be the joint PDF at the initial
time t=0. The time evolution of P is simply obtained from
the relationship

P��u,�v,�,�T,	;t�d�u d�v d� d�T d	

= P0d�u0d�v0d�0d�T0d	0.

An initially imposed joint PDF thus evolves according to the
evolution equation P��u ,�v ,� ,�T ,	 ; t�=Jt0P0, Jt0 being the
Jacobian of the inverse transformation between times t and 0.
In more detail, assuming for P0 a given form �e.g., a Gauss-
ian form for velocity and temperature and a solid angular
uniform distribution, as we will see later�, the calculation of
the Jacobian at the order t4 yields the expression for the
O�t4�-evolved PDF. This expression clearly contains all rel-
evant statistical information about the short-time evolution of
any two-point statistical indicator. More precisely, to calcu-
late the ensemble average �O�=�OP d�u d�v d� d�T d	 of
some quantity O at time t, we simply have used the relation

�O��u,�v,�,�T,	;t�� = �O„�u��u0, . . . ,	0�,�v��u0, . . . ,	0�,

���u0, . . . ,	0�,�T��u0, . . . ,	0�,

	��u0, . . . ,	0�;t…�0, �6�

where �O�0=�OP0d�u0d�v0d�0d�T0d	0. The advantage of
expression �6� is that it does not involve the evolved PDF,
thus avoiding the calculation of the Jacobian Jt0. Let us ex-
tract therefore some standard observables and show that they
behave consistently with known results of turbulent convec-
tion.

At first we have to assume an initial joint PDF. Assuming
at t=0 homogeneous and isotropic conditions and Gaussian-
ity for the three components of the velocity increment—
hence that �v0 is distributed according to the Abel transform
of the transverse Gaussian �see �15��—in the three-
dimensional case we have

P0�d = 3� =
e−�u0

2/2�u
2

�2��u

�v0e−�v0
2/�v

2

�v
2

1

2�

e−�T0
2/2�T

2

�2��T

sin 	0

2
,

while in the two-dimensional one

P0�d = 2� =
e−�u0

2/2�u
2

�2��u

e−�v0
2/2�v

2

�2��v

e−�T0
2/2�T

2

�2��T

1

2�

�but with different ranges in the latter case: dv0� �−
 , +
�
and 	� �0,2���.

A second point to address is relative to the constraint aris-
ing from the requirement of dealing with homogeneous fluc-
tuations. In the three-dimensional case �see �16� for the two-
dimensional case�, assuming �u=�v, the imposition ��u�
= ��T�=0 at O�t4� leads to Kr

�i�=0, i=0, . . . ,3, and Hrr
��0�=

−�5/3��u
2 / l2 �see �17��. The remaining parameters of Hrr� �t�

can be arranged as functions of Hre
�0�, Hre

�1�, and Hre
�2�. For the

sake of example, after simple but lengthy algebra one obtains
Hrr

��1�=−��2��u / l�Hre
�0�. The explicit expressions for Hrr

��2�

and Hrr
��3� are quite long and not particularly informative;

they are, however, reported in �18�. The values of Hre
�i� and of

Hrn
�i� remain undetermined for i=0, . . . ,3. The important point

we anticipate here is that the results we are going to show do
not depend on these free parameters. In view of the fact that
we do not have to fix any other free parameter, the conclu-
sions we will draw in the following do appear very robust
and independent from the model details.

Once the homogeneity condition is met, the first point we
want to assess is the sign of both energy and temperature
variance fluxes. To do that it is enough to study the sign of
Su= ���u�3� / ���u�2�3/2 and �T= ���T�2�u�. The negative
�positive� sign means a flux toward small �large� scales. At
O�t2� we found

Su = −
6�u�d − 2�

ld
t ,

�T = −
2�u

2�T
2

l
t .

It is evident from the above expressions that, while �T main-
tains the same �negative� sign for d=2 and d=3, this is not
the case for the skewness factor, which becomes zero on
passing from d=3 to d=2. This result is a reminiscence of
the fact that temperature variance flows toward small scales
for both d=2 and d=3, while this does not happen for the
energy flux, which stops flowing to small scales on passing
from d=3 to d=2 �see �19��.

Another interesting point to investigate is whether the ini-
tially imposed Gaussian fluctuations deform as time runs to
generate a non-Gaussian PDF. The easiest way to see that
is to calculate the flatness indicator for both velocity and
temperature fluctuations: Fu����u�4� / ���u�2�2 and FT

����T�4� / ���T�2�2. Up to O�t3� their expressions read

Fu = 3 +
72�u

2�d − 2�2

l2d2 t2, �7a�

FT = 3 +
12�u

2

l2 t2. �7b�

It is worth observing from �7� that at O�t2� buoyancy does
not enter into play. At that order, temperature and velocity
fluctuations evolve as if the former field were a passive sca-
lar. In this case our results can be thus compared with those
of �10� where the passive scalar case has been numerically
analyzed.

Fu=FT=3 would correspond to the Gaussian case. In both
cases the second-order corrections Fu

�2� and FT
�2� are positive:

this is the fingerprint of the emergence of non-Gaussian sta-
tistics. In agreement with �10� for d=2 we found Fu=3 and
FT�3. This is consistent with the fact that the degree of
non-Gaussianity in the two-dimensional inverse energy cas-
cade appears to be very small �19,20� and nevertheless inter-
mittency is generated by the dynamics ruling temperature
fluctuations �19,21�. Again in agreement with the numerical
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results of Ref. �10� we found FT�Fu. This result is consis-
tent with the experimental results of Ref. �22� where passive
scalar statistics is shown to be more intermittent than the
advective velocity statistics.

Buoyancy contributes to the flatness factors at the O�t4�,
and its correction to these factors relative to the purely hy-
drodynamic case is given by

Fu��g � 0� − Fu��g = 0� = 
�g�T

l
�2�ad + bd
 l�g�T

�u
2 �2�t4,

�8a�

FT��g � 0� − FT��g = 0� = 
�g�T

l
�2

cdt4, �8b�

where ad, bd, and cd are positive numbers depending on the
dimension d: a2=7/2, b2=3/8, c2=19/2, a3=155/27, b3
=4/15, and c3=50/9. Since buoyancy contributions are posi-
tive, �8� tell us that generation of non-Gaussianity is more
effective in convective environments than in situations where
the buoyancy is absent. This is consistent with the fact that

velocity fluctuations in turbulent convection are more inter-
mittent than fluctuations in turbulent flows where buoyancy
does not drive the dynamics �23�.

In conclusion, a model for the short-time evolution of an
initially imposed fluctuation in convective turbulence has
been proposed and investigated in analytical terms. Remark-
ably, well-known features of fully developed turbulent con-
vection are already present at the very initial stage of the
temporal evolution predicted by the model, whose results do
not show an explicit dependence on the model free param-
eters. Interesting aspects left to future research are on how to
fix the remaining model free parameters with the aim of un-
derstanding their possible role to reach a statistically steady
state and on the extension of the present analysis to other
turbulent systems including magnetohydrodynamics and
non-Newtonian turbulence.
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